3.4.67 \(\int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx\) [367]

3.4.67.1 Optimal result
3.4.67.2 Mathematica [C] (verified)
3.4.67.3 Rubi [A] (verified)
3.4.67.4 Maple [A] (verified)
3.4.67.5 Fricas [C] (verification not implemented)
3.4.67.6 Sympy [F(-1)]
3.4.67.7 Maxima [F]
3.4.67.8 Giac [F]
3.4.67.9 Mupad [B] (verification not implemented)

3.4.67.1 Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {68 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {44 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {44 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {68 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{45 d}+\frac {6 a^3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d}+\frac {2 a^3 \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{9 d} \]

output
68/15*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/ 
2*d*x+1/2*c),2^(1/2))/d+44/21*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x 
+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+68/45*a^3*cos(d*x+c)^(3/2) 
*sin(d*x+c)/d+6/7*a^3*cos(d*x+c)^(5/2)*sin(d*x+c)/d+2/9*a^3*cos(d*x+c)^(7/ 
2)*sin(d*x+c)/d+44/21*a^3*sin(d*x+c)*cos(d*x+c)^(1/2)/d
 
3.4.67.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.34 (sec) , antiderivative size = 548, normalized size of antiderivative = 3.73 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\cos ^{\frac {7}{2}}(c+d x) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (-\frac {17 \cot (c)}{30 d}+\frac {97 \cos (d x) \sin (c)}{336 d}+\frac {73 \cos (2 d x) \sin (2 c)}{720 d}+\frac {3 \cos (3 d x) \sin (3 c)}{112 d}+\frac {\cos (4 d x) \sin (4 c)}{288 d}+\frac {97 \cos (c) \sin (d x)}{336 d}+\frac {73 \cos (2 c) \sin (2 d x)}{720 d}+\frac {3 \cos (3 c) \sin (3 d x)}{112 d}+\frac {\cos (4 c) \sin (4 d x)}{288 d}\right )-\frac {11 \cos ^3(c+d x) \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {17 \cos ^3(c+d x) \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) (a+a \sec (c+d x))^3 \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{60 d} \]

input
Integrate[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^3,x]
 
output
Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*((-17*Cot[c 
])/(30*d) + (97*Cos[d*x]*Sin[c])/(336*d) + (73*Cos[2*d*x]*Sin[2*c])/(720*d 
) + (3*Cos[3*d*x]*Sin[3*c])/(112*d) + (Cos[4*d*x]*Sin[4*c])/(288*d) + (97* 
Cos[c]*Sin[d*x])/(336*d) + (73*Cos[2*c]*Sin[2*d*x])/(720*d) + (3*Cos[3*c]* 
Sin[3*d*x])/(112*d) + (Cos[4*c]*Sin[4*d*x])/(288*d)) - (11*Cos[c + d*x]^3* 
Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*S 
ec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x])^3*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[ 
1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - 
ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[ 
c]^2]) - (17*Cos[c + d*x]^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*(a + a*Sec[c + d*x 
])^3*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2] 
*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sq 
rt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sq 
rt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c] 
)/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[ 
c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 
 + Tan[c]^2]]))/(60*d)
 
3.4.67.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.41, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4752, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {9}{2}}(c+d x) (a \sec (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{9/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^3}{\sec ^{\frac {9}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \left (\frac {a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sec ^{\frac {5}{2}}(c+d x)}+\frac {3 a^3}{\sec ^{\frac {7}{2}}(c+d x)}+\frac {a^3}{\sec ^{\frac {9}{2}}(c+d x)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {68 a^3 \sin (c+d x)}{45 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{9 d \sec ^{\frac {7}{2}}(c+d x)}+\frac {44 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {44 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {68 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}\right )\)

input
Int[Cos[c + d*x]^(9/2)*(a + a*Sec[c + d*x])^3,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((68*a^3*Sqrt[Cos[c + d*x]]*Elliptic 
E[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(15*d) + (44*a^3*Sqrt[Cos[c + d*x]]* 
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^3*Sin[c + d*x] 
)/(9*d*Sec[c + d*x]^(7/2)) + (6*a^3*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) 
 + (68*a^3*Sin[c + d*x])/(45*d*Sec[c + d*x]^(3/2)) + (44*a^3*Sin[c + d*x]) 
/(21*d*Sqrt[Sec[c + d*x]]))
 

3.4.67.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.4.67.4 Maple [A] (verified)

Time = 22.34 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.77

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (560 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}-600 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}+212 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+66 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-430 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+165 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-357 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+192 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{315 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(260\)

input
int(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
-4/315*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(560*co 
s(1/2*d*x+1/2*c)^11-600*cos(1/2*d*x+1/2*c)^9+212*cos(1/2*d*x+1/2*c)^7+66*c 
os(1/2*d*x+1/2*c)^5-430*cos(1/2*d*x+1/2*c)^3+165*(sin(1/2*d*x+1/2*c)^2)^(1 
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2) 
)-357*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellip 
ticE(cos(1/2*d*x+1/2*c),2^(1/2))+192*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2* 
c)^2-1)^(1/2)/d
 
3.4.67.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 175, normalized size of antiderivative = 1.19 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {2 \, {\left (165 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 165 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 357 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 357 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (35 \, a^{3} \cos \left (d x + c\right )^{3} + 135 \, a^{3} \cos \left (d x + c\right )^{2} + 238 \, a^{3} \cos \left (d x + c\right ) + 330 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d} \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")
 
output
-2/315*(165*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin( 
d*x + c)) - 165*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I* 
sin(d*x + c)) - 357*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInver 
se(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 357*I*sqrt(2)*a^3*weierstrassZ 
eta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (3 
5*a^3*cos(d*x + c)^3 + 135*a^3*cos(d*x + c)^2 + 238*a^3*cos(d*x + c) + 330 
*a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/d
 
3.4.67.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(9/2)*(a+a*sec(d*x+c))**3,x)
 
output
Timed out
 
3.4.67.7 Maxima [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")
 
output
integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(9/2), x)
 
3.4.67.8 Giac [F]

\[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {9}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(9/2)*(a+a*sec(d*x+c))^3,x, algorithm="giac")
 
output
integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(9/2), x)
 
3.4.67.9 Mupad [B] (verification not implemented)

Time = 14.62 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.40 \[ \int \cos ^{\frac {9}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {2\,\left (a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{3\,d}-\frac {2\,\left (\frac {33\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )}{\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {5\,a^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )}{\sqrt {{\sin \left (c+d\,x\right )}^2}}\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {15}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{77\,d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {104\,a^3\,{\cos \left (c+d\,x\right )}^{11/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {11}{4};\ \frac {19}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{385\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(9/2)*(a + a/cos(c + d*x))^3,x)
 
output
(2*(a^3*ellipticF(c/2 + (d*x)/2, 2) + a^3*cos(c + d*x)^(1/2)*sin(c + d*x)) 
)/(3*d) - (2*((33*a^3*cos(c + d*x)^(7/2)*sin(c + d*x))/(sin(c + d*x)^2)^(1 
/2) - (5*a^3*cos(c + d*x)^(11/2)*sin(c + d*x))/(sin(c + d*x)^2)^(1/2))*hyp 
ergeom([1/2, 11/4], 15/4, cos(c + d*x)^2))/(77*d) - (2*a^3*cos(c + d*x)^(9 
/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, cos(c + d*x)^2))/(3*d*(sin(c 
+ d*x)^2)^(1/2)) - (104*a^3*cos(c + d*x)^(11/2)*sin(c + d*x)*hypergeom([1/ 
2, 11/4], 19/4, cos(c + d*x)^2))/(385*d*(sin(c + d*x)^2)^(1/2))